A Designed Zinc-finger Transcriptional Repressor of Phospholamban Improves Function of the Failing Heart
نویسندگان
چکیده
Selective inhibition of disease-related proteins underpins the majority of successful drug-target interactions. However, development of effective antagonists is often hampered by targets that are not druggable using conventional approaches. Here, we apply engineered zinc-finger protein transcription factors (ZFP TFs) to the endogenous phospholamban (PLN) gene, which encodes a well validated but recalcitrant drug target in heart failure. We show that potent repression of PLN expression can be achieved with specificity that approaches single-gene regulation. Moreover, ZFP-driven repression of PLN increases calcium reuptake kinetics and improves contractile function of cardiac muscle both in vitro and in an animal model of heart failure. These results support the development of the PLN repressor as therapy for heart failure, and provide evidence that delivery of engineered ZFP TFs to native organs can drive therapeutically relevant levels of gene repression in vivo. Given the adaptability of designed ZFPs for binding diverse DNA sequences and the ubiquity of potential targets (promoter proximal DNA), our findings suggest that engineered ZFP repressors represent a powerful tool for the therapeutic inhibition of disease-related genes, therefore, offering the potential for therapeutic intervention in heart failure and other poorly treated human diseases.
منابع مشابه
ZNF552, a novel human KRAB/C2H2 zinc finger protein, inhibits AP-1- and SRE-mediated transcriptional activity.
In this study, we report the identification and characterization of a novel C2H2 zinc finger protein, ZNF552, from a human embryonic heart cDNA library. ZNF552 is composed of three exons and two introns and maps to chromosome 19q13.43. The cDNA of ZNF552 is 2.3 kb, encoding 407 amino acids with an amino-terminal KRAB domain and seven carboxyl-terminal C2H2 zinc finger motifs in the nucleus and ...
متن کاملA novel member of the RING finger family, KRIP-1, associates with the KRAB-A transcriptional repressor domain of zinc finger proteins.
The Krüppel-associated box A (KRAB-A) domain is an evolutionarily conserved transcriptional repressor domain present in approximately one-third of zinc finger proteins of the Cys2-His2 type. Using the yeast two-hybrid system, we report the isolation of a cDNA encoding a novel murine protein, KRAB-A interacting protein 1 (KRIP-1) that physically interacts with the KRAB-A region. KRIP-1 is a memb...
متن کاملKRAB-independent suppression of neoplastic cell growth by the novel zinc finger transcription factor KS1.
The study of zinc finger proteins has revealed their potential to act as oncogenes or tumor suppressors. Here we report the molecular, biochemical, and functional characterization of KS1 (KRAB/zinc finger suppressor protein 1), a novel, ubiquitously expressed zinc finger gene initially isolated from a rat pancreas library. KS1 contains 10 C2H2 zinc fingers, a KRAB-A/B motif, and an ID sequence ...
متن کاملExpression of the transcriptional repressor protein Kid-1 leads to the disintegration of the nucleolus.
The rat Kid-1 gene codes for a 66-kDa protein with KRAB domains at the NH2 terminus and two Cys2His2-zinc finger clusters of four and nine zinc fingers at the COOH terminus. It was the first KRAB-zinc finger protein for which a transcriptional repressor activity was demonstrated. Subsequently, the KRAB-A domain was identified as a widespread transcriptional repressor motif. We now present a bio...
متن کاملGLIS3, a novel member of the GLIS subfamily of Krüppel-like zinc finger proteins with repressor and activation functions.
In this study, we describe the identification and characterization of a novel transcription factor GLI-similar 3 (GLIS3). GLIS3 is an 83.8 kDa nuclear protein containing five C2H2-type Krüppel-like zinc finger motifs that exhibit 93% identity with those of GLIS1, however, little homology exists outside their zinc finger domains. GLIS3 can function as a repressor and activator of transcription. ...
متن کامل